Author Affiliations
Abstract
1 Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
2 College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
3 School of Mechanical, Medical and Process Engineering, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
Electrochemical reduction of CO2 into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO2 capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO2 electrochemical reduction reaction (CO2RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C3N4) as the active sites for CO2-to-CH4 conversion in CO2RR. By regulating the coordination and density of Cu sites in g-C3N4, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH4 Faraday efficiency of 49.04% and produces the products with a high CH4/C2H4 ratio over 9. This work provides the first experimental study on g-C3N4-supported single Cu atom catalyst for efficient CH4 production from CO2RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO2RR by engineering Cu active sites in 2D materials with porous crystal structures.
Nano-Micro Letters
2023, 15(1): 238
Author Affiliations
Abstract
1 School of Precision Instrument and Optoelectronics Engineering, Institute of Laser and Optoelectronics, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
3 Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
4 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
We investigate the generation of single-transverse-mode Laguerre-Gaussian (LG) emission from a diode-end-pumped Nd:YVO4, 1064 nm laser using mode selection via intracavity spherical aberration (SA). We present both theoretical and experimental investigations, examining the limits of the order (both radial and angular indices) of the LG modes which can be produced, along with the resultant output power. We found that in order to generate single-mode emission of low-order LG modes which have relatively small beam diameters, lenses with shorter focal-length were required (to better differentiate neighboring LG modes via SA). The converse was true of LG modes with high-order. Through appropriate choice of the focal length of the intracavity lens, we were able to generate single-mode, LG0,±m laser output with angular indices m selectable from 1 to 95, as well as those with non-zero radial indices p of up to 4.
PhotoniX
2022, 3(1): 4
作者单位
摘要
1 南京邮电大学信号处理与传输研究院, 江苏 南京 210003
2 全球能源互联网研究院有限公司, 江苏 南京 210003
电力信息系统数据(尤其是国际业务数据)的安全传输关系着整个电网的安全运行。无条件 安全的量子通信技术可大幅提高系统数据传输的安全级别,并提供对窃听者的可检测性。 基于与测量设备无关量子密钥分配(MDI-QKD)协议,针对国际电力业务数据传输的特殊性, 提出将MDI-QKD协议应用到传统的电力系统国际业务数据传输的即插即用MDI-QKD方案,此方 案包括测量控制中心、外网国际业务专区和海外传输前置区。测量控制中心负责光脉冲的产 生和贝尔态测量,外网国际业务专区和海外传输前置区通过密钥管理端口与量子虚拟专用 网(VPN)相连,实施数据加密,理论分析验证了所提方案的可行性。
量子通信 国际业务数据传输 即插即用 测量设备无关量子密钥分配协议 quantum communication international business data transmission plug-and-play measurement-device-independent quantum key distrib 
量子电子学报
2019, 36(1): 34
作者单位
摘要
1 西安理工大学机械与精密仪器工程学院精密仪器系, 陕西 西安 710048
2 西安石油大学光电油气测井与检测教育部重点实验室, 陕西 西安 710065
分析了传统Pound-Drever-Hall (PDH)激光稳频方法的工作原理,设计了一种基于正交解调原理的PDH 激光稳频方案。该方案采用直接数字频率合成器同时产生两路频率均为10 MHz 的正弦和余弦信号,其中正弦信号分为两路:一路用于驱动电光相位调制器以产生相位边带,另一路与余弦信号一起作为相位解调的参考信号。经相位调制后的激光束耦合进入F-P 参考腔,所产生的光外差干涉信号由光电探测器进行探测,其输出信号分别与两路正交参考信号进行混频,经低通滤波后得到误差信号的两个正交分量,二者经A/D 转换后进入微处理器进行正交相敏检波运算,即可得到PDH 稳频系统的误差信号。建立了正交解调PDH 激光鉴频实验系统,对F-P 参考腔的腔长进行线性扫描,观察到了鉴频曲线,其鉴频灵敏度为1.82 V/MHz,最大频率变化量为5.48 MHz。实验结果表明,所设计的正交解调PDH 稳频方案可行。
激光器 激光稳频 正交解调 直接数字频率合成器 鉴频曲线 
中国激光
2016, 43(3): 0316001
作者单位
摘要
新疆师范大学物理与电子工程学院新疆矿物发光材料及其微结构实验室, 新疆 乌鲁木齐 830054
为了增强β-FeSi2 薄膜的发光强度,通过脉冲激光轰击(PLD)β-FeSi2和Si靶材沉积于Si(1 1 1)面制备了优质的β-FeSi2/Si薄膜,薄膜表面光滑、平整,β-FeSi2颗粒尺寸在20~50 nm左右。光致发光(PL)测试显示,β-FeSi2/Si薄膜在低温下(20 K)在1540 nm 左右的近红外处有一较强发光峰,对应b-FeSi2带-带跃迁。对Si 层进行掺杂Er3+处理,发现处理后的β-FeSi2/Si∶Er 薄膜发光强度得到明显地增强,掺入Er 使β-FeSi2/Si 薄膜非辐射复合中心得到有效地抑制,且β-FeSi2/Si:Er 薄膜的红外发光来自Er3+离子的4I13/2→4I15/2的跃迁和β-FeSi2纳米颗粒带带复合的发光叠加。
薄膜 β-FeSi2/Si 薄膜 光致发光 
激光与光电子学进展
2015, 52(8): 083101
Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
2 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Department of Physics, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
4 Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10<sup>13</sup>/cm<sup>3</sup> can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower than that of infrared pulse. The linear absorption of UV laser by air is considered in the simulation and it is shown that the linear absorption is important for the limit of the length of plasma channel.
等离子体通道 自聚焦 深紫外激光 320.5550 Pulses 320.7110 Ultrafast nonlinear optics 320.7090 Ultrafast lasers 
Chinese Optics Letters
2009, 7(9): 865

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!